
1

Chapter 4: Dynamic Programming

• Overview of a collection of classical solution
methods for MDPs known as dynamic
programming (DP)

• Show how DP can be used to compute value
functions, and hence, optimal policies

• Discuss efficiency and utility of DP

Objectives of this chapter:

1

Policy Evaluation: for a given policy π, compute the
 state-value function Vπ

2

Policy Evaluation

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ } = Eπ γ krt+k +1 st = s
k =0

∞

∑







Bellman equation for Vπ :

Vπ (s) = π (s, a) Ps ′ s
a Rs ′ s

a + γV π(′ s)[]
′ s
∑

a
∑

— a system of S simultaneous linear equations

Recall:

2

3

Iterative Methods

 V0 → V1→L→Vk → Vk+1 →L→ Vπ

Vk +1 (s)← π (s, a) Ps ′ s
a Rs ′ s

a + γVk (′ s)[]
′ s
∑

a
∑

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy evaluation backup:

3

4

Iterative Policy Evaluation

4

5

A Small Gridworld

• An undiscounted episodic task
• Nonterminal states: 1, 2, . . ., 14;
• One terminal state (shown twice as shaded squares)
• Actions that would take agent off the grid leave state unchanged
• Reward is –1 until the terminal state is reached

5

6

Iterative Policy Eval for the Small Gridworld

π = random (uniform) action choices

6

7

Policy Improvement
Suppose we have computed for a deterministic policy π.Vπ

For a given state s,
would it be better to do an action ? a ≠ π(s)

 Qπ (s, a) = Eπ rt +1 + γV π(st +1) st = s, at = a{ }
= Ps ′ s

a

′ s
∑ Rs ′ s

a +γ Vπ (′ s)[]

The value of doing a in state s is :

It is better to switch to action a for state s if and only if
 Qπ (s, a) > V π (s)

7

8

Policy Improvement Cont.

′ π (s) = argmax
a

Qπ (s, a)

= argmax
a

Ps ′ s
a

′ s
∑ Rs ′ s

a + γV π (′ s)[]

Do this for all states to get a new policy ′ π that is
greedy with respect to V π :

Then V ′ π ≥ Vπ

8

9

Policy Improvement Cont.

What if V ′ π = Vπ ?

i.e., for all s ∈S, V ′ π (s) = max
a

Ps ′ s
a

′ s
∑ Rs ′ s

a +γ Vπ (′ s)[] ?

But this is the Bellman Optimality Equation.
So V ′ π = V∗ and both π and ′ π are optimal policies.

9

10

Policy Iteration

 π0 →V π 0 →π1 → Vπ1 →Lπ * →V * →π *

 policy evaluation policy improvement
“greedification”

10

11

Policy Iteration

11

Jack’s Car Rental
• $10 for each car rented (must be available when request

received

• Two locations, maximum of 20 cars at each

• Cars returned and requested randomly

• Poisson distribution, n returns/requests with prob

• 1st location: average requests = 3, average returns = 2

• 2nd location: average requests = 4, average returns = 2

• Can move up to 5 cars between locations overnight

• States, Actions, Rewards?

• Transition probabilities?

•

€

λ
n!
e−λ

12
12

Jack’s Car Rental

13
13

Jack’s CR Exercise
• Suppose the first care moved is free

• From 1st to 2nd location

• Because an employee travels that way anyway (by bus)

• Suppose only 10 cars can be parked for free at each
location

• More than 10 cost $4 for using an extra parking lot

• Such arbitrary nonlinearities are common in real problems
14

14

15

Value Iteration

Vk +1 (s)← π (s, a) Ps ′ s
a Rs ′ s

a + γVk (′ s)[]
′ s
∑

a
∑

Recall the full policy evaluation backup:

Vk +1 (s)← max
a

Ps ′ s
a Rs ′ s

a + γVk (′ s)[]
′ s
∑

Here is the full value iteration backup:

15

16

Value Iteration Cont.

16

Gambler’s Problem

• Gambler can repeatedly bet $ on a coin flip

• Heads he wins his stake, tails he loses it

• Initial capital: $1, $2, ... , $99

• Gambler wins if his capital becomes $100; loses if it
becomes $0

• Coin is unfair

• Heads (gambler wins) with probability p = 0.4

• States, Actions, Rewards?

17
17

Gambler’s Problem Solution

18
18

Herd Management
• You are a consultant to a farmer managing a herd of cows

• Herd consists of 5 kinds of cows:
• Young
• Milking
• Breeding
• Old
• Sick

• Number of each kind is the State
• Number sold of each kind is the Action
• Cows transition from one kind to another
• Young cows can be born

19
19

20

Asynchronous DP
• All the DP methods described so far require exhaustive

sweeps of the entire state set.

• Asynchronous DP does not use sweeps. Instead it works
like this:

• Repeat until convergence criterion is met:

- Pick a state at random and apply the appropriate
backup

• Still need lots of computation, but does not get locked
into hopelessly long sweeps

• Can you select states to backup intelligently? YES: an
agent’s experience can act as a guide.

20

21

Generalized Policy Iteration
Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

A geometric metaphor for
convergence of GPI:

21

22

Efficiency of DP
• To find an optimal policy is polynomial in the

number of states…

• BUT, the number of states is often astronomical,
e.g., often growing exponentially with the number of
state variables (what Bellman called “the curse of
dimensionality”).

• In practice, classical DP can be applied to problems
with a few millions of states.

• Asynchronous DP can be applied to larger problems,
and appropriate for parallel computation.

• It is surprisingly easy to come up with MDPs for
which DP methods are not practical.

22

23

Summary
• Policy evaluation: backups without a max

• Policy improvement: form a greedy policy, if only locally

• Policy iteration: alternate the above two processes

• Value iteration: backups with a max

• Full backups (to be contrasted later with sample backups)

• Generalized Policy Iteration (GPI)

• Asynchronous DP: a way to avoid exhaustive sweeps

• Bootstrapping: updating estimates based on other
estimates

23

