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Chapter 4: Dynamic Programming

• Overview of a collection of classical solution 
methods for MDPs known as dynamic 
programming (DP)

• Show how DP can be used to compute value 
functions, and hence, optimal policies

• Discuss efficiency and utility of DP

Objectives of this chapter: 
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Policy Evaluation: for a given policy π, compute the 
           state-value function  Vπ
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Policy Evaluation

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ } = Eπ γ krt+k +1 st = s
k =0
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Bellman equation for Vπ :

Vπ (s) = π (s, a) Ps ′ s 
a Rs ′ s 

a + γV π( ′ s )[ ]
′ s 
∑

a
∑

— a system of S  simultaneous linear equations

Recall:
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Iterative Methods

  V0 → V1→L→Vk → Vk+1 →L→ Vπ

Vk +1 (s)← π (s, a) Ps ′ s 
a Rs ′ s 

a + γVk ( ′ s )[ ]
′ s 
∑

a
∑

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy evaluation backup:
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Iterative Policy Evaluation
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A Small Gridworld

• An undiscounted episodic task
• Nonterminal states: 1, 2, . . ., 14; 
• One terminal state (shown twice as shaded squares)
• Actions that would take agent off the grid leave state unchanged
• Reward is –1 until the terminal state is reached
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Iterative Policy Eval for the Small Gridworld

π =  random (uniform) action choices
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Policy Improvement
Suppose we have computed       for a deterministic policy π.Vπ

For a given state s, 
would it be better to do an action                 ? a ≠ π(s)

 Qπ (s, a) = Eπ rt +1 + γV π(st +1 ) st = s, at = a{ }
= Ps ′ s 

a

′ s 
∑ Rs ′ s 

a +γ Vπ ( ′ s )[ ]

The value of doing a in state s is :

It is better to switch to action a for state s if and only if
                            Qπ (s, a) > V π (s)
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Policy Improvement Cont.

′ π (s) = argmax
a

Qπ (s, a)

= argmax
a

Ps ′ s 
a

′ s 
∑ Rs ′ s 

a + γV π ( ′ s )[ ]

Do this for all states to get a new policy ′ π  that is 
greedy  with respect to V π :

Then V ′ π ≥ Vπ
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Policy Improvement Cont.

What if V ′ π = Vπ  ?

i.e.,    for all s ∈S,    V ′ π (s) = max
a

Ps ′ s 
a

′ s 
∑ Rs ′ s 

a +γ Vπ ( ′ s )[ ]  ?

But this is the Bellman Optimality Equation.
So V ′ π = V∗ and both π and ′ π  are optimal policies.
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Policy Iteration

  π0 →V π 0 →π1 → Vπ1 →Lπ * →V * →π *

 policy evaluation policy improvement
“greedification”
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Policy Iteration
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Jack’s Car Rental
• $10 for each car rented (must be available when request 

received

• Two locations, maximum of 20 cars at each

• Cars returned and requested randomly

• Poisson distribution, n returns/requests with prob 

• 1st location: average requests = 3, average returns = 2

• 2nd location: average requests = 4, average returns = 2

• Can move up to 5 cars between locations overnight

• States, Actions, Rewards?

• Transition probabilities?

•

€ 

λ
n!
e−λ
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Jack’s Car Rental
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Jack’s CR Exercise
• Suppose the first care moved is free

• From 1st to 2nd location

• Because an employee travels that way anyway (by bus)

• Suppose only 10 cars can be parked for free at each 
location

• More than 10 cost $4 for using an extra parking lot

• Such arbitrary nonlinearities are common in real problems
14
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Value Iteration

Vk +1 (s)← π (s, a) Ps ′ s 
a Rs ′ s 

a + γVk ( ′ s )[ ]
′ s 
∑

a
∑

Recall the full policy evaluation backup:

Vk +1 (s)← max
a

Ps ′ s 
a Rs ′ s 

a + γVk ( ′ s )[ ]
′ s 
∑

Here is the full value iteration backup:
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Value Iteration Cont.
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Gambler’s Problem

• Gambler can repeatedly bet $ on a coin flip

• Heads he wins his stake, tails he loses it

• Initial capital: $1, $2, ... , $99

• Gambler wins if his capital becomes $100; loses if it 
becomes $0

• Coin is unfair

• Heads (gambler wins) with probability p = 0.4

• States, Actions, Rewards?
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Gambler’s Problem Solution
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Herd Management
• You are a consultant to a farmer managing a herd of cows

• Herd consists of 5 kinds of cows:
• Young
• Milking
• Breeding
• Old 
• Sick

• Number of each kind is the State
• Number sold of each kind is the Action
• Cows transition from one kind to another
• Young cows can be born
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Asynchronous DP
• All the DP methods described so far require exhaustive 

sweeps of the entire state set.

• Asynchronous DP does not use sweeps. Instead it works 
like this:

• Repeat until convergence criterion is met:

- Pick a state at random and apply the appropriate 
backup

• Still need lots of computation, but does not get locked 
into hopelessly long sweeps

• Can you select states to backup intelligently? YES: an 
agent’s experience can act as a guide.
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Generalized Policy Iteration
Generalized Policy Iteration  (GPI):  
any interaction of policy evaluation and policy improvement, 
independent of their granularity.

A geometric metaphor for
convergence of GPI: 
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Efficiency of DP
• To find an optimal policy is polynomial in the 

number of states…

• BUT, the number of states is often astronomical, 
e.g., often growing exponentially with the number of 
state variables (what Bellman called “the curse of 
dimensionality”).

• In practice, classical DP can be applied to problems 
with a few millions of states.

• Asynchronous DP can be applied to larger problems, 
and appropriate for parallel computation.

• It is surprisingly easy to come up with MDPs for 
which DP methods are not practical.   
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Summary
• Policy evaluation: backups without a max

• Policy improvement: form a greedy policy, if only locally

• Policy iteration: alternate the above two processes

• Value iteration: backups with a max

• Full backups (to be contrasted later with sample backups)

• Generalized Policy Iteration (GPI)

• Asynchronous DP: a way to avoid exhaustive sweeps

• Bootstrapping: updating estimates based on other 
estimates
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